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Abstract--In transpression/transtension zones the strain is three-dimensional and rotational. This causes 
material to move through the plane of cross-section, often invalidating balancing and restoration within this 
plane. Methods are presented which allow the three-dimensional segmented, irregular, helical locus of an 
originally straight line to be constructed, in any direction, on a structure contour map of a folded and faulted 
surface. This construction depends on a knowledge of the kinematics of folding and faulting and can be modified 
to suit local conditions. The ratio of the length of the cylindrical envelope bounding this helical locus, to the sum 
of the lengths of the helical fragments between faults, gives the true stretch in the direction of the envelope. When 
the traces of the segmented helices are constructed in different directions on a deformed surface, the sectional 
finite-strain ellipse can be found for that surface. Knowledge of the dimensions of this ellipse and its orientation 
with respect to the kinematic axes of the transpression zone allows the tensor components to be constrained. This 
permits the three-dimensional boundary conditions to be determined and thus restored. 

The methods are applied to the Ardross Fault zone in central Scotland. The solutions suggest this fault zone 
underwent a phase of dextral transpression along a NW zone boundary during Hercynian E-W compression in 
the Scottish Midland Valley. Contemporaneous E-W dyke swarms and N-S regional flexures support these 
kinematics. 

INTRODUCTION 

RESTORATIONS of thrust belts and extensional basins are 
usually achieved by reconstructing cross-sections in the 
plane containing the bulk displacement vector; move- 
ments of material through this plane are generally not 
considered. If, however, the deformation is triaxial and 
rotational, as it is in transpression/transtension, then in 
general section planes will have movement of material 
through them. 

For this reason the deformation represented in two- 
dimensional cross-sections through triaxially deformed 
rocks cannot be restored directly. Instead, a three- 
dimensional representation of the deformation must be 
restored. Barr (1984a,b, 1985) recognized this and pro- 
posed that structure contour maps should be restored in 
non-plane strain deformations. His valuable work in this 
field is, however, limited to basins in which the most 
significant component of the bulk deformation is 
attributable to faulting. Although he considered the 
effects of hangingwall rollover anticlines, folding in 
general was not fully considered. Furthermore the resto- 
rations he presented assume very simple fault kinemat- 
ics; for example, slip vectors of all faults in a basin have 
parallel map projections; all faults are dip-slip; or slip 
vectors of all faults have map projections which lie 
normal to the axes of their 'rollover' anticlines (Barr 
1985). 

This paper introduces a new technique for restoring 
structure contour maps of horizons folded and faulted in 

*Present address: Shell Internationale Petroleum Maatschappij, 
Oostduinlaan 75, 2596JJ, The Hague, The Netherlands. 

triaxial strains, and this technique is particularly suitable 
for the analysis of transpression/transtension. It involves 
measuring the bulk finite sectional strain ellipse in the 
plane of regional bedding (the first-order trend surface 
representing the deformed horizon). This sectional 
strain ellipse is measured by considering two three- 
dimensional components of the deformation; faulting 
and folding. If the sectional ellipse is orientated with 
respect to principal or kinematic axes it can then be used 
to constrain the triaxial deformation, in this case rep- 
resented by the transpression tensor of Sanderson & 
Marchini (1984). Knowledge of a tensor which could 
generate the observed strain facilitates a description of 
the possible boundary conditions, which can then be 
restored. Furthermore, the inverse tensor, or reciprocal 
deformation, can restore not only the boundaries but 
also regional geological features to their former 
attitudes. 

The presented methods have been developed to allow 
a reconstruction of the deformation associated with the 
Ardross Fault, a Hercynian dextral wrench fault in the 
Scottish Midland Valley (Fig. 1). Although the example 
is of a relatively small volume of rock (about 107 m3), the 
methods are essentially independent of scale and could 
be used with larger-scale structure contour maps. (These 
maps could be seismically derived or generated from 
field observations.) 

Assumptions are made about the kinematics of struc- 
tures which, although applicable to the Ardross Fault 
zone, may require modification in other situations. Sev- 
eral alternative strategies are suggested, but it is the 
general approach to the restoration of zones in which 
horizons have been folded and faulted in triaxial defor- 
mations that is emphasized here. 
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THREE-DIMENSIONAL STRAINS RESULTING 
FROM FAULTING 

Structure contour maps of deformed horizons are 
commonly used by exploration geologists and are usually 
seismically derived. They can also be drawn by extrapol- 
ation of data from a geologically mapped surface. 
Besides representing a folded surface, contour maps 
usually contain the lenticular projections of the hanging- 
wall and footwall cut-offs of the faults which intersect 
that surface. In the following discussion these are called 
the 'cut-off lenses'. Further to this, the geologist may 
have been able to constrain the probable slip directions 
on these faults, in which case the map projections of the 
slip vectors could be superimposed on the cut-off lenses. 

The bulk strain in any direction in a contour map 
containing this information can be found by drawing a 
line across the map in any desired direction until it 
intersects a fault cut-off lens (Fig. 2). At this point the 
course of the line should be deflected parallel to the map 
projection of the slip vector. Upon reaching the opposite 
side of the cut-off lens, the line should resume its original 
trend until reaching the next cut-off, where it should 
again be 'dog-legged' along the map projection of the 
slip vector, and so on across the rest of the map. 

This dog-legged line across the structure contour map 
now records the strain measured both in a vertical plane 
(using the elevations from the contours), and in a hori- 
zontal plane (using the positions in the map). In other 
words, the segmented and dog-legged line records the 
strain in three dimensions. The stretch (measured in the 
direction of the cylindrical envelope bounding this seg- 
mented line) is determined by dividing the length of the 
envelope by the sum of the lengths of the line fragments 
between the faults (Fig. 3). Note that all these lengths 
should be measured in three dimensions using the pos- 
itions and elevations from the structure contour map. 

EXTRAPOLATION ONTO CONTOUR MAPS 

To measure the three-dimensional strains resulting 
from faulting, a knowledge of the cut-off lenses and slip 
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Fig. 2. Contour map of a gently flexured sub-horizontal layer cut by 
oblique faults of finite areal extent. The lenticular outlines are the 
hangingwall and footwall cutoffs ( 'cut-off  lenses' ). The arrows are the 
map projections of the slip vectors, and the dog-legged trace A A '  
represents the trace of an originally straight line on the pre-faulting 

bedding surface. 

vectors is obviously required. Unfortunately they are 
both notoriously difficult to determine. Three-dimen- 
sional seismic surveying helps constrain cut-off lenses, 
but for the field geologist other practical strategies are 
required. As for constraining slip vectors, the seismic 
interpreter cannot resolve features such as slickenside 
lineations. Even the field geologist finds that slickenside 
lineations often only mark a component of net slip, and 
that lithological piercements are sparse. Tectonic pierce- 
ments, such as fold hinges, are particularly valuable 
where there is no ambiguity in matching pre-existing 
hinges. However, fault traces are often shorter than the 
fold wavelength, leaving only map separations (of bed- 
ding traces and contour lines), bedding attitude and fault 
attitude as attainable data. 

The following two sections suggest ways in which this 
attainable data can be used objectively to generate 
representative cut-off lenses and slip vectors on contour 
maps. These strategies, like most extrapolative 
techniques, have their limitations and the geologist may 
prefer to define his or her own for a given situation. 
What is important, however, is that cut-off lenses and 
slip vectors must be represented on the contour map if 
the component of the bulk strain attributable to faulting 
is to be considered. 

A simple method for determining slip vectors from 
bedding attitude, fault attitude and map separation (of 
bedding traces or contour lines) 

One set of the three commonly measurable quantities: 
bedding attitude, fault attitude and sense of map separ- 
ation of bedding traces (or contour lines), does not give 
a unique solution for the slip vector of a fault. If, 
however, (1) the faults can be divided into sub-parallel 
sets, (2) the faults in a set have sub-parallel slip vectors 
and (3) the bedding is variably dipping, then slip vectors 
can be assigned to each fault set. This is achieved for a set 
of faults by plotting their intersections with bedding on a 
stereogram and assigning them an appropriate dextral or 
sinistral map-separation symbol (Fig. 4). The resulting 
stereogram depicts a great circle spread in which the 
sinistral and dextral separation symbols lie on either side 
of the slip vector. It should be emphasized that this 
technique can also be used directly on seismically- 
derived contour maps by using the map separations of 
contours (of the same elevation) in place of bedding 
traces on the geological map. 

Fig. 3. The cylindrical envelope bounding a line which is segmented in 
three dimensions by movements on faults. The fault slip vectors are 
represented by the dashed arrows. The stretch in the direction of the 
envelope is simply the length, l ' ,  of the envelope, divided by I~ 10, the 

sum of the line fragments (solid lines) between the faults. 
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Fig. 4. Method for determining slip vectors from observations of 
bedding separations. The slip vectors (heavy arrows) in the fault plane 
generate sinistral (open circles) or dextral (solid circles) map separ- 
ations depending on the orientation of the bedding-fault intersection. 
(a)-(f)  depict a rotation of the intersection from west-plunging through 
down-fault dip to east-plunging. Note that once the intersection passes 
through the slip vector, the sense of map separation changes. The 
orientation at which this change occurs can thus be used as an 

approximation of the slip vector for a set of sub-parallel faults. 

This technique would probably not apply to the traces 
of anastomosing wrench zones where dip-slip and 
wrench faults are often sub-parallel. In such cases combi- 
nations of the standard methods for determining slip 
vectors would have to be used (e.g. slickensides and 
lithological piercements). What is important, however, 
is that the slip vectors of the faults must be known, or at 
least constrained, to restore transpression or any other 
triaxial deformation. 

Utilizing data at the geologically-mapped surface to 
determine a representative population of  fault cut-off 
lenses in a structure contour map 

Having obtained the directions of the slip vectors, the 
magnitude of displacement can be defined from the 
distance between the hangingwall and footwall cut-offs 
in this direction. These cut-offs may be relatively easy to 
determine from three-dimensional seismic surveys, but 
for the field geologist they are more problematical. A 
simple objective strategy has therefore been developed 
for the field geologist to utilize the information gathered 
at the geologically mapped surface. This strategy could 
also be modified to suit individual requirements. 

In areas where finite fault traces are mapped at the 
surface we are faced with the problem of projecting 
them to depth. If it is assumed that the tip-line of the 
fault is sub-elliptical, then the fault trace at the surface is 
simply a chord to that ellipse. To be able to project 
individual faults onto a contour map, we would need to 
know the relative positions of the contoured horizon and 
the tip-line ellipses. Even knowing the tip-line geometry 
of surface faults, we would generally find that the con- 
tour map would have fewer faults than the surface map, 
because of the finite areal extent of the faults. Clearly 
this would be a misrepresentation of the deformation, 
since the contoured horizon would probably be inter- 

sected by other faults whose tip-lines did not reach the 
mapped surface. 

In an attempt to account for the bulk strain attribut- 
able to faulting we could assume that the contour map 
and the surface map have similar fault populations. This 
approach is particularly applicable where faults have 
short traces and tend to be steep, isolated from one 
another and uniformly distributed throughout the body 
of rock. If, however, there is evidence of a horizontal 
detachment, it would be unreasonable to project the 
fault population beneath it. The following discussion 
assumes that the surface map and the contour map have 
similar fault populations and that the strain attributable 
to faulting in one is equivalent to that in the other. 

There are two obvious strategies for projecting the 
faults onto the contour map. Either the tip-line ellipse is 
projected down the fault dip to the contour map, describ- 
ing a planar strip, or it is moved vertically onto it, 
describing an elliptical cylinder. Since the projections 
are done simply to generate a representative distribution 
of faults on the contour map, and not to locate individual 
faults, it does not matter which strategy is adopted. 
However, to preserve the spatial relationships of faulting 
and folding, measured on the surface geology map, 
vertical projection of faults onto the contour map is 
preferred. 

To ensure that the strain attributable to faulting is the 
same in both maps, an objective strategy must be defined 
for determining the dimensions of the fault cut-off 
lenses. The information we would generally have at our 
disposal from the surface geology map (Fig. 5a) would 
be as follows: (1) TT',  the length of the fault trace; (2) 
M, the position of the point of maximum apparent 
separation; (3) BB',  the magnitude of this maximum 
apparent separation; (4) the orientation of the fault; (5) 
the orientation of bedding at M; (6) the orientation of 
the contoured horizon, H-H ' ,  directly below the point 
M. 

Conservation of the area of the cut-off lens (measured 
in the fault plane) effectively ensures that the strain 
attributable to faulting is the same in both the surface 
geology map and the contour map. Furthermore, it is 
taken that a fault plane represented in the surface ge- 
ology map is parallel to its projected equivalent in the 
contour map. Thus cut-off lens area will not only be 
conserved in the plane of the fault, but will also be 
conserved in the map plane. This permits the dimensions 
of a cut-off lens, determined in the surface geology map, 
to be used to construct a similar cut-off lens in the 
contour map. 

The procedure for determining the dimensions of a 
cut-off lens in a surface geology map is outlined in 
Fig. 5(b). First, draw the two sets of structure contours 
representing the fault and a bedding-parallel surface 

• through M, and construct the intersection UU'  of these 
two surfaces. The trace of UU'  is parallel to the map 
projection of the long axis of the fault cut-off lens in the 
surface geology map. It is taken that (on average) the 
length of the long axis, CC', is equal to the length of the 
fault trace TT'. (This assumption is made because, 
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the surface map is adequately represented in the contour 
map. Indeed the user is free to define his own strategies. 
What is important, however, is that the strain attribut- 
able to faulting should be constrained as well as is 
practically possible, whether or not this includes 
extrapolation. 

THREE-DIMENSIONAL STRAINS RESULTING 
FROM FOLDING 

b z~ ,o k o k - , o - z ~  

C 

l l I l l l l 
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"{'"1' 
Fig. 5. Procedure for determining fault cut-offs on a structure contour  

map.  See text for details, 

When folded, originally straight lines on bedding 
surfaces in general become irregular, three-dimensional 
helices, or in special cases inclined planar curves (see 
Ramsay 1967, Chapter 8-3). The map projections of 
these deformed traces are not straight lines. This implies 
that there must, in general, be a map-plane deformation 
associated with folding. Only in a few special cases does 
the deformed line become a vertical planar curve, and 
only then should it be restored in that plane. In general, 
however, it is the three-dimensional helical loci of 
deformed lines which should be restored. Unfortu- 
nately, kilometre-scale deformed lines are rare in nature 
(!) so they must be generated across a contour map. 

A full discussion of the deformation of lineations by 
folding is given in Ramsay (1967, Chapter 8). However 
a more detailed study of the effect of flexural-slip folding 
on the three-dimensional movement of material is now 
considered, both because it is a simple model and 
because it is applicable in many non-metamorphic zones 
of deformation. Other folding models could equally well 
be applied, using the appropriate loci of deformed lin- 
eations in a manner similar to that outlined below. 

without knowledge of the position of the tip-line, it is 
equally likely that CC' could be slightly longer or slightly 
shorter than "IT'.) Having constrained the orientation 
and length of the map view of the cut-off lens, its width 
can be effectively constrained by the points B and B' 
which delimit the maximum separation at the surface. 
The four points C, B, C' and B', constrain the dimen- 
sions of the cut-off lens, which should be drawn on the 
contour map. 

Although the outline, and thus area, of the cut-off lens 
is directly transferred to the contour map, it will prob- 
ably need to be rotated. This is because, in general, the 
attitude of bedding at the surface will not be equal to that 
at a point directly below on the contour map. The 
desired orientation of the long axis of the cut-off lens in 
the contour map is determined using the intersection of 
the fault and bedding contours in a manner similar to 
that shown in Fig. 5(b). The map projection of the slip 
vector can then be superimposed and contouring can be 
completed up to the edges of the lens (Fig. 5c), making 
sure that the magnitudes of slip are compatible with 
those determined at the surface. 

It must be emphasized that the above procedures do 
not claim to locate the positions and dimensions of faults 
at depth, they simply attempt to ensure that the strain in 
SG 10: I - G  

Generating the traces of  the helical loci of  deformed lines 
across structure contour maps 

A straight line in a surface will, on folding, form a 
helix that has a geometry dependent on the fold 
mechanism. For flexural-slip folds the line will have a 
constant angular relationship with the fold axis (Ramsay 
1967, p. 463), and its locus will plot as a partial small- 
circle on a stereogram. This permits the three-dimen- 
sional configuration of the trace to be easily constructed 
across a structure contour map. It can then be measured 
and used to calculate the component of the strain 
attributable to folding. 

The method for determining the trace of the helical 
locus, ioiN, across the contour map is illustrated in Fig. 6 
and is described as follows. 

(1) Determine the local fold axis, fl, from the contour 
map and/or measurements made at the mapped surface 
and plot it on a stereogram. 

(2) Construct the great circle, b0, representing the 
plane whose dip vector is ft. 

(3) On the contour map, draw a short line from the 
axial trace in any desired direction, ioil, and measure the 
angle q0 between it and the trend of ft. 

(4) Measure out the horizontal angle q0 from the 
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Fig. 6. Diagrammatic representation of the principles for constructing the trace of an originally straight line across a 
structure contour map where bedding has been folded by flexural-slip. See text for details• 

azimuth offl on the stereogram and draw a line which has 
this trend through the centre of the stereogram. 

(5) Determine the point of intersection between this 
line and b0. 

(6) Measure the angle a0, from fl along b0 to this 
intersection point. This is the half-apical angle of the 
partial small-circle locus of this deformed line. 

Knowing the angle a0, one can determine the map 
projection of the trace, itir~, of a deformed line across the 
contour map using the following iterative loop. 

(7) On the contour map, at the point ij, where the 
short line, ij_ i/j, intersects a contour, measure the angle 
pj,  between the trend offl and the tangent to the contour. 

(8) In the horizontal plane, measure out the angle pj 
from the azimuth of fl on a stereogram and draw the 
great circle, bj ,  which has this strike and passes through 
ft. This great circle represents the bedding at ij. 

(9) Determine the azimuth of the point which lies on 
the great circle b j ,  at an angle a0 from ft. This is the trend 
of the trace of the deformed line element ijij+l across  the 
contour map. 

(10) Draw this line element on the contour map until 
it intersects the next contour at iJ+l and return to pro- 
cedure (7) above. 

Fig• 7. Determination of the bulk linear stretch by dividing the length 
of the envelope, 1', containing the segmented helix by the sum of the 
component helical segments which lie between the faults (the slip 
vectors of which are shown as dashed arrows). All measurements are 
made in three dimensions using position and elevation from a structure 

contour map. 

This iterative construction produces a close approxi- 
mation to the helical trace on the map. Clearly the 
smoothness of the curve is dependent on the number of 
iterations per unit length of trace. Any accumulated 
errors are minimized by generating the traces from their 
centres, outwards in opposite directions. In order to 
determine the length, 10, of the helix, its elevation (from 
the contour map) is plotted against distance along the 
map trace, and the length of this curve is measured. The 
stretch resulting from folding (measured in the direction 
of the cylindrical envelope bounding the helix) is deter- 
mined by dividing the length of this envelope by the 
length, 10, of the helix. 

THREE-DIMENSIONAL STRAINS RESULTING 
FROM FAULTING AND FOLDING 

By combining the above technique for generating 
helical loci across structure contour maps with the earlier 
technique of generating the courses of lines which are 
segmented and dog-legged by fault cut-off lenses, a 
measure of bulk finite strain can be made. The stretch 
(measured in the direction of the bounding cylindrical 
envelope) of the resulting dog-legged helical locus is 
simply determined by dividing the length, l ' ,  of the 
envelope by ~ 10, the sum of the lengths of the helical 
fragments between the faults (Fig. 7). Remember that 
the lengths should be determined in three-dimensions, 
using elevation and position on the structure contour 
map. 

RESTORING THE BULK FINITE STRAINS 

Knowledge of the stretches of the segmented helical 
loci permits the definition of the bulk finite strain; 
however, the boundary conditions which lead to that 
strain cannot be uniquely defined. They can, however, 
be approximated if a suitable deformation model is 
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assumed. The constant volume transpression tensor of 
Sanderson & Marchini (1984) is considered here because 
it is simple, three-dimensional and general. It can 
describe the continuous spectrum of deformations which 
range from plane strain compression in thrust belts, 
through triaxial transpression, to simple shear in wrench 
zones, and from there through triaxial transtension, to 
plane strain extension in basins (see also McCoss 1986). 

Perhaps the most convenient way to constrain the 
components of the transpression tensor is to determine 
the bulk finite-sectional strain ellipse in the plane of 
regional bedding. This is achieved by generating seg- 
mented helical loci of originally straight lines in different 
directions across the structure contour map, using the 
techniques described above. Their stretches are then 
measured and used to determine the parameters of the 
rotated ellipse which minimizes the sum of the squares of 
the residuals (see, for example, Gill & Murray 1978). 
Since the ellipsoids described by the transpression tensor 
have a limited set of characteristics it is possible to 
constrain them with just one sectional ellipse. (A single 
sectional ellipse can be used to determine the corre- 
sponding ellipsoid provided it can be orientated with 
respect to the principal axes of the ellipsoid, as explained 
by Ramsay 1967, pp. 148-149, or, as in this case, the 
kinematic axes of the transpressional deformation.) 

In the example below, the kinematic axes of the 
transpressional deformation are as follows: x is horizon- 
tal and parallel to the defined tectonic boundary (the 
Ardross Fault), y is horizontal but normal to the bound- 
ary and z is vertical and parallel to the boundary. 

The transpression tensor solution is found by numeri- 
cal substitution of its components. Substitutions are 
carried out until the sectional ellipse in a plane parallel 
to regional bedding (in which the stretches were 
measured) has the same characteristics as those 
observed in the measured ellipse. The principal stretches 
of the measured sectional ellipse are given arbitrary 
error bars of + 10%, and angles are taken as accurate to 
+10 °. This facilitates the identification of a suite of 
probable transpression tensor solutions. 

A simple, if somewhat indirect, method for determin- 
ing the sectional ellipse of an ellipsoid is as follows. First 
calculate the stretches of three non-parallel lines which 
pass through the centre of the ellipsoid (see Ramsay 
1967, Chapter 4) and also lie in the plane of section. 
Then use these stretches to constrain the sectional ellipse 
(see Ramsay 1967, Chapter 3). 

RESTORATION OF THE ARDROSS FAULT ZONE 

The southeast block of the Ardross Fault, a NE-trend- 
ing, Hercynian, dextral, wrench fault in the Scottish 
Midland Valley (Figs. 1, 8 and 9), is used to illustrate the 
application of the above methods. The Ardross Fault 
was first described and recognized as a sub-vertical 
dextral wrench fault by Cumming (1936). Since his work 
other investigations of the area have been made by 
Anderson (1951) and Francis & Hopgood (1970). All 

but Anderson (pp. 99--100) recognized that the fault has 
a significant dextral component but disagreed over the 
magnitude of the displacement. 

Of the two fault blocks, the southeastern one is more 
intensely deformed, comprising closely folded (en 6che- 
Ion) and faulted Lower Carboniferous (Upper Vis6an 
and Lower Namurian) sandstones and shales with subor- 
dinate ironstones and limestones. The SE margin of this 
7 km-wide block is delineated by the contemporaneous 
Firth of Forth Fault zone, which trends parallel to the 
Ardross Fault (Figs. 1 & 9). Since the lengths of these 
parallel bounding faults are considerably longer than 
their separation, it is presumed that the rocks deformed 
in the intervening block were not extruded out of the 
ends but were instead able to thicken vertically, towards 
the free surface, between the two steep fault zones. 
Indeed a measure of the horizontal stretch parallel to the 
trace of the Ardross Fault (see later) shows that there is 
no significant strain in this direction, confirming the 
validity of this assumption. 

The fault zone is also intruded by volcanic necks and 
dykes which were first recognized by Geikie (1879, 1902) 
and have been dated by their associated pyroclastic 
deposits elsewhere in Fife as Upper Carboniferous 
(Namurian and Westphalian) rocks by Francis & Ewing 
(1961) and Forsyth & Chisolm (1968). Locally, however, 
Francis (1968) observed that some pyroclastics also 
occur in the Upper Calciferous Sandstone Measures 
(Vis6an). More recently Forsyth & Rundle (1978) made 
K-Ar age determinations on the neck intrusions in the 
area and deduced that they are probably uppermost 
Carboniferous (Stephanian) or even Permian. 

The fault is well exposed on the foreshore at Newark 
Castle (G.B. National Grid ref. No. 518012), 1 km 
southwest of St. Monance, Fife, enabling local 
lithostratigraphic members to be identified and the area 
subsequently mapped at the scale of 1 : 1000 with the aid 
of aerial photographs (Fig. 8). The base of the Newark 
Siltstone member has been selected as a suitable surface 
for analysis, since its trace is well represented at the 
mapped surface and it lies near the middle of the strati- 
graphic sequence. This and the lack of evidence of major 
horizontal discontinuities make the extrapolation of 
structures from both above and below more reasonable. 
The surface was contoured using cubic interpolation to 
constrain its morphology (McCoss 1987), and then the 
traces of the fault cut-offs were projected onto it, using 
the methods described above (Fig. 10). Since the faults 
generally have short traces, representing isolated and 
uniformly distributed flaws, the slip vectors were 
evaluated using the map separation technique (de- 
scribed above), on measurements taken from this and 
adjacent areas of the southeastern block (Fig. 11). The 
map components of these slip vectors were then superim- 
posed on the 'cut-off lenses' (Fig. 10). It should be noted 
that the majority of the faults extend the axial traces of 
the folds and that these traces trend at low acute angles 
(anticlockwise) from the trace of the Ardross Fault. 
These features are predicted in the dextral transpression 
model of Sanderson & Marchini (1984, fig. 5). 
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Fig. 8. Geological map of the Ardross Fault on the foreshore at Newark Castle (Grid ref. NO518012) between St. Monance 
and Elie, Fife. 

Having constructed a representation of the contorted 
and fractured surface, the segmented helical loci of 
originally straight lines were generated in five directions 
across it (Fig. 12). This was achieved using the pro- 
cedures illustrated in Figs. 2 and 6. A flexural-slip model 
was adopted as a first approximation for the folding at 
Newark Castle because the folds are practically parallel 
and undeformed fossils suggest there is no significant 
tangential longitudinal strain. The fact that faults extend 

the axial traces of the folds does not discount the use of 
a flexural-slip model, since in this context, it is only used 
to analyse the segments of the deformed horizon which 
lie between faults. It is not used to model the large scale 
geometry of the folds. 

After generating the segmented helical loci one can 
measure the lengths of the cylindrical envelopes bound- 
ing them and lying parallel to the plane of regional 
bedding (which dips at 50 ° towards 120°). These lengths 

H.B.E 

/ I t  Anticline ~ ~ ~ _  W x £ ' ~ x ~ ,  j 
~ G* ~ \ 'X.... .~._.~.~'_. 

' - . .  . . . .  _ / 

- "  " E . -  ......... ~ I:.. F. 

50km 

Fig. 9. Major structural components in the Scottish Midland Valley which were active during Hercynian tectonics. 
Abbreviations: A.F., Ardross Fault; F.F.F., Firth of Forth Fault; H.B.F., Highland Boundary Fault; S.U.F., Southern 

Uplands Fault; E., Edinburgh; G., Glasgow; D., Dundee• 
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Fig. 10. Structure contour map of the base of the Newark Siltstone member. The 'cut-off lenses' and map components of 
the slip vectors of the faults are superposed. Contours are in metres. 

were then divided by the corresponding sums of the 
lengths of the individual helical segments between faults 
to give a measure of the stretch in each of the five 
directions. The measured stretches are shown in Fig. 
13(a) and are used to constrain a least-squares bulk finite 
strain ellipse in the plane of regional bedding (Fig. 13b). 
Although there is no line in regional bedding which is 
exactly horizontal and parallel to the trace of the Ardross 
Fault (the x axis), the generated locus a is only 12 ° from 

this orientation (see Figs. 12 and 13a). It is significant 
that the stretch along locus a is only 0.98: this line 
(sub-parallel to the x axis) exhibits negligible net finite 
strain. 

We now know several features in the bulk deforma- 
tion which permit us to assume that it was probably 
caused by boundary conditions which can be closely 
approximated by the transpression tensor of Sanderson 
& Marchini (1984). These are listed as follows. 

a b c d 

L 

• f g h 

Fig. 11. Eight sets of faults identified in the mapped and adjacent parts of the southeast block of the Ardross Fault zone. 
Poles to the faults are shown as crosses. The map separations for different orientations of bedding are represented at the 
points of bedding-fault intersection. Open and solid circles denote sinistral and dextral separations, respectively. For a great 
circle spread, the slip vector lies between the two groups of symbols. (a) Steep dextral wrench faults, sub-parallel to the 
Ardross Fault (cf. the Y-shears of Bartlett et aL 1981). (h), (c) SSW and NNE-dipping normal faults. (d) Steep, oblique, 
normal-dextral wrench faults trending about 25 ° clockwise from the Ardross Fault, (cf. synthetic R-shears in transpression, 
see Sanderson & Marchini 1984, fig. 5). (e) Steep sinistral wrench faults conjugate to the R-shears. (f), (g) Steep NNE- and 
SSW-dipping reverse faults, possibly rotated and inverted equivalents of the more common normal faults which have this 

trend. (h) Others. 
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Fig. 12. The traces, a-e, of five segmented helices generated in different directions across the contour map shown in Fig. 10. 

(1) The zone is bounded by a pair of steep and parallel 
boundary faults that are considerably longer than their 
normal separation. So for most points in the upper 
crustal portion of this block the nearest free surface will 
be vertically upwards. 

(2) Horizontal fold axes with vertical axial surfaces 
trend at low acute angles from the boundary faults. 
These imply a significant vertical extension and a signifi- 
cant horizontal shortening oblique to the boundaries 
(normal to fold axes). 

(3) Minor faults generally extend the traces of the fold 
axes, implying a significant horizontal lengthening 
oblique to the boundaries (parallel to fold axes). 

(4) Although deformed, a horizontal line trending 
subparallel to the Ardross Fault shows negligible net 
finite strain. 

From Fig. 13, knowledge of the orientation and 
dimensions of the sectional ellipse relative to the bound- 
ary fault (taken as the kinematic zx plane) enables the 
possible transpression tensor solutions to be examined. 
This is achieved by numerical substitution, as described 

above, and leads to the specification of the following 
'best' transpression tensor D; 

l i -0.38 0 D =  0.56 0 
0 1.78 

The orientations and magnitudes of the principal axes 
are determined by finding the eigenvectors and eigen- 
values of the Finger tensor, DD' (Sanderson et al. 
1980, Sanderson 1982). Such an analysis reveals that 
the ratio of the finite principal stretches, sl:s2:s3 is 
1.78 : 1.09:0.51 and the angle between the major axis of 
the horizontal sectional ellipse and the fault boundary, 
0' = 13.7 ° (anticlockwise). The orientation of the 
minimum principal stretch (s3) is sub-perpendicular to 
the fold axes and that of the maximum principal stretch 
(sl) is vertical (sub-parallel to the axial planes). The 
maximum horizontal extension is sub-parallel to the 
axial traces and at a high angle to the extensional faults. 

Figure 14 gives an impression of the size of the suite of 
probable transpression tensor solutions which can be 

N 

d 

a b 

b a 

d 

Fig. 13. (a) A stereogram depicting a great circle in the plane of regional bedding (50°/120 °) with the stretches determined 
from Fig. 12 given in the appropriate orientations a-e. (b) The sectional strain ellipse in this inclined plane corresponding 
to these stretches. Smax and Smi n are the maximum and minimum principal stretches of the inclined sectional ellipse. The 
cross-hatching denotes the attitude of a horizontal line. The co-ordinate axes (x, y, z) of the transpression tensor and the 

trend of the Ardross Fault (A.F.) are also shown. 
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Fig. 14. A plot of S, the relative magnitude of zone-boundary displace- 
ment against A, the angle of boundary displacement (see inset for 
geometrical relationships). The nest of solutions centred on S = 0.58 
and A = 41 ° (dextral) are the possible transpressions, within certain 
error limits (see text), which satisfy the inclined sectional ellipse of 

Fig. 13. 

constrained by the sectional ellipse, when its principal 
axes are considered accurate to within +10% and its 
orientation to within + 10 °. The figure shows a plot of S, 
the magnitude of zone-boundary displacement, against 
A, the angle describing the obliquity of the deformation 
(see the inset in Fig. 14 for the precise geometrical 
relationships of S and A, and McCoss 1986 for the 
definitions of S and A in terms of the tensor compo- 
nents). It can be seen from this plot that the probable 
suite of solutions is compact and implies a dextral trans- 
pressional deformation with S approximately equal to 
0.58 (relative to a zone of initial unit width) and A 
approximately 41 °. (The angle A is defined as the hori- 
zontal angle between the displacement vector and the 
normal to the zone boundary.) 

A restoration of these boundary conditions is depicted 
in Fig. 15 and suggests that the boundary displacement 
was relatively west to east. This is entirely compatible 
with the concept of Hercynian E-W compression in the 
Scottish Midland Valley, as implied by the N-S trending 
regional flexures and the contemporaneous E-W dyke 
swarms (Fig. 9). Furthermore, if D -1, the reciprocal 
deformation is applied to a plane parallel to regional 
bedding (in which the strain measurements were made) 
then the plane in the deformed state (50°/120 °) is rotated 
to dip 19°/104 °. This too is compatible with independent 
geological evidence from the area, since this orientation 
of undeformed bedding is typical of that found outside 
the intensely deformed 1.5 km wide tract along the 
southeast side of the Ardross Fault, for example, in the 
gently ESE-dipping limb of the Anstruther Anticline. 

Since the width of the studied zone is less than the 
width of the zone of deformation (due to the limit of 
exposure) it is important to note that this is only a partial 
restoration, for the rocks exposed on the foreshore. 
Hence the magnitude of zone-boundary displacement is 
an underestimate for the region as a whole. Furthermore 
the displacement vector may refract with distance from 
the fault, so the presented solution claims to be no more 
than that for a small homogeneously strained region 
nearest to the fault. Other studies, however, could 
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Fig. 15. Restoration of the Ardross Fault when S = 0.58 and ,4 = 41 ° 
(dextral). F0 is the relative position of the fault when the deformation 
is restored. F '  is the present position of the fault and the dotted line is 

the SE margin of the restored, fault-parallel tract. 

examine larger volumes of rock, since the techniques are 
essentially independent of scale. 

CONCLUSIONS 

Only in special cases, in which originally straight lines 
in bedding lie normal to horizontal fold axes and parallel 
to the map components of fault slip vectors (for their 
entire lengths), do lines deform to vertical planar faulted 
curves. These are the only cases for which sections 
containing them should be restored by either line or area 
balancing. In general, an originally straight line deforms 
to a segmented irregular helix, due to three-dimensional 
brittle and ductile translations and rotations of material. 
It is the length of the three-dimensional envelope bound- 
ing this segmented helix, divided by the sum of the 
lengths of the component helical fragments, which gives 
the true stretch. Methods have been presented in this 
paper which enable the traces of these segmented helices 
to be generated across structure contour maps. From the 
position on the map and the height from the contours the 
three-dimensional lengths can be measured and the 
stretch computed. 

A technique has been devised to obtain the slip vectors 
from standard geological map data, namely bedding 
attitude, fault attitude and sense of map separation. In 
other situations slickenside lineations or piercements 
may be used to determine the slip vector. What is 
important however, is that slip vectors must be con- 
strained if triaxial deformations are to be restored. 

The consequences of folding must also be considered, 
and if helical loci are to be generated across structure 
contour maps then a folding model must be adopted. 
Flexural-slip represents one such simple fold model, 
which is frequently appropriate in non-metamorphic 
rocks. Any folding model could, however, be adopted, 
so long as the form of the locus of a deformed line can be 



120 A . M .  McCoss  

adequately defined. In the case of flexural-slip folds this 
locus, when plotted on a s tereogram, is simply a partial 
small circle centred on the fold axis. Ideally, iineations in 
the field should be used to determine the true locus, but 
in non-metamorphic  deformat ions  these are generally 
rare so indirect methods have to be used to show that the 
model  is compatible  with the available data, for 
example,  fold morphology and the characteristics of the 
strain (or lack of  it) within bedding. 

Having determined the stretches of initially straight 
lines in different directions within regional bedding, a 
least-squares bulk sectional strain ellipse can be deter- 
mined. In general this measured finite strain cannot give 
a unique boundary  solution; however  it can if a probable  
deformat ion tensor is assumed. In this paper  the trans- 
pression tensor of Sanderson & Marchini (1984) is 
adopted because it is general,  simple, three-dimensional  
and can describe a spectrum of oblique deformations 
(McCoss 1986). This spectrum ranges continuously f rom 
plane strain in thrust belts through triaxial transpression, 
to simple shear in wrench zones, and f rom there through 
triaxial transtension to plane strain in extensional basins. 

The methods have been applied to the Uppe r  Vis6an 
to Lower  Namurian  rocks adjacent  to the Ardross Fault,  
a steep,  NE-trending,  Hercynian,  dextral wrench fault 
in Fife, Scotland. The  results indicate that, in response 
to Hercynian eas t -west  shortening, the northwestern 
block was displaced relatively eastwards. This generated 
dextral transpression in the block bounded to the north- 
west by the Ardross  Fault and to the southeast  by the 
adjacent and parallel Firth of Forth Fault. The trans- 
pressional phase of the Ardross  Fault must  have ended 
by Stephanian to Permian times since relatively un- 
deformed volcanic vents of this age cut the closely folded 
Uppe r  Vis6an to Lower  Namur ian  sedimentary rocks. 

The methods described in this paper  could be used 
either directly or in modified form to suit other faulting, 
folding and deformat ion models.  Fur thermore ,  because 
the basic techniques are independent  of scale, they could 
be applied to larger regions. Indeed studies at the scale 
of  the example  presented in this paper  could be used to 
analyse the partitioning or compartmental isat ion of 
strain within larger tectonic zones. 
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